
International Conference on Soft Computing and Engineering
(IJSCE-Sep-Oct-2017)

ISSN: 2231-2307, Volume-5 Issue-3, July 2015

61

Load Balancing in Heterogeneous Cloud Environment
1 B.Saritha, 2 J.Himabindu Priyanka, 3N.Krishna Vardhan, 4 K.Sreekanth

1,2,3,4 Associate Professor, CSE Department, St.Martins Engineering College,JNTUH,India.

Abstract— Cloud computing is a heterogeneous environment
offers a rapidly and on-demand wide range of services to the end
users.It’s a new solution and strategy for high performance
computing where, it achieve high availability, flexibility, cost
reduced and on demand scalability. The need to efficient and
powerful load balancing algorithms is one of the most important
issues in cloud computing to improve the performance. This
paper proposed a hybrid load balancing algorithm to improve the
performance and efficiency in heterogeneous cloud environment.
The algorithm considers the current resource information and
the CPU capacity factor and takes advantages of both random
and greedy algorithms. The hybrid algorithm has been evaluated
and compared with other algorithms using cloud Analyst
simulator. The experiment results show that the proposed
algorithm improves the average response time and average
processing time compared with other algorithms.

Keywords—Cloud Computing, Cloud Analyst, Scheduling
algorithm, Virtual Machine Load Balancing.

I. INTRODUCTION

In recent years, Cloud computing become a new computing
model emerged from the rapidly development of internet. It
leads the new IT revolution. Cloud computing considered an
evolution of distributed systems. The National Institute of
Standards and Technology's (NIST) define a Cloud
computing as "cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications and services) that
can be rapidly provisioned and released with minimal
management effort or service provider interaction. "[3]
cloud computing has moved computing and data away from
desktop and portable PCs into large data centers[2]. Cloud
computing is a heterogeneous environment offers a rapidly
and on-demand wide range of services[1]. Heterogeneous
environment means having different hardware
characteristics including CPU, memory, storage and other
hardware[2].Load balancing considered as one of the most
challenges in cloud computing. It is the major factor to
improve the performance of the cloud computing. The
current load balance scheduling algorithms in cloud
computing environment is not highly efficient[5]. Load
balancing in cloud computing environment is very complex
task till today, because prediction of user request arrivals on
the server is not possible, and each virtual machine has
different specification, so it becomes a very difficult to
schedule job and balance the load among node[6].
Recently,

Many research works have proposed a load balancing
algorithms in cloud computing such as Round Robin,
Equally Spread Current Execution and Throttled Load
Balancing Algorithm. The current load balance scheduling
algorithms in heterogeneous cloud computing environment
is not highly efficient[5]. This research proposes a hybrid
load balancing algorithm to improve the performance and
efficiency in heterogeneous cloud computing environment.
The proposed algorithm takes advantages of both random
and greedy algorithms and considers the current resource
information and the CPU capacity factor to achieve the
objectives. The hybrid algorithm has been evaluated and
compared with other algorithms using cloud Analyst
simulator. The result showed improvements on average
response time and on processing time by considering the
current resource information and the CPU capacity factor
compared with other algorithms, and this means the
performance has improved. The paper in general will be
organized as follows: Section two is devoted to cloud
computing overview. In section three the load balancing
overview. In section four the related works. In section five
we define the proposed algorithm. Section six is about
experiment and results. Section seven is for the conclusion
and future work.

II. CLOUD COMPUTING

Cloud computing is a heterogeneous environment offers a
rapidly and on-demand wide range of services [1].
Heterogeneous environment means having different
hardware characteristics including CPU, memory, storage
and other hardware [2]. The business owner can start and
expand without invest in the infrastructure with lowering
operating and maintenance cost. It has moved computing and
data away from desktop and portable PCs. The cloud is a
virtualization of resources that maintains and manages itself
[13]. It builds on a wide range of different computing
technologies such as high-performance computing,
distributed systems, virtualization, storage, networking,
security, management and automation, Service-Oriented
Architecture (SOA), Service-Level Agreement (SLA) and
Quality of Service (QoS)...etc.[14].

A. Cloud Service Model
Cloud Computing as shown in Figure 1 can be delivered
through such delivery models as follow:
 Infrastructure as a Service (IaaS): This model of

Cloud computing provide Hardware as a Service via
Internet such as storage, CPU and other. There aremany
IaaS providers such as Amazon Elastic Cloud Compute
(EC2), Rackspace[4][5].

 Platform as a Service (PaaS):
Cloud computing provide a platform as a services that
required for building application, where user using tools and
libraries for Cloud service providers, and also consumers
deployed their applications without costing of hardware.

Hybrid Load Balancing Algorithm in Heterogeneous Cloud Environment

62

There are many PaaS providers such as Google App Engine, consist of heterogeneous resource [11], so the behaves of
Windows Azure[4][5].
 Software as a Service (SaaS): Focus on providing

heterogeneous cloud different
and different response times

and has different attributes
for any process [13]. Load

different software hosted on the Cloud and usually referred
to as on-demand software; the consumer will have to pay for
usage of software. Usually consumer access to the software
via the Internet [4][5]. There are many SaaS provider such as
Google Apps, SalesForce.com.

Figure 1 Cloud Computing Architecture

balancing algorithm can be divided into two categories as A)
Static and B) Dynamic.[14][8].

A. Static algorithms:
Static algorithms divide the traffic equivalently between
servers; the load balancing strategy has been made by load
balancing algorithm at compile time [15] By this approach
the traffic on the servers will be disdained easily and
consequently it will make the situation more imperfectly. A
general disadvantage of all static schemes is that the final
selection of a host for process allocation is made when the
process is created and cannot be changed during process
execution to make changes in the system load. Round robin
algorithms are a static load balance algorithm because the
work load distributions between processors are equal [16].

B. Dynamic algorithms:
In dynamic algorithms decisions on load balancing are
based on current state of the system. No prior knowledge is

B. Cloud computing model

There are different types of clouds [6], each with its own
benefits and drawbacks

 Public clouds: A cloud in which service providers offer

needed for load balancing. So it is better than static
approach. Dynamic load balancing can be done in two ways:
[17][16]

1) Distributed dynamic load balancing:
In the distributed one, the dynamic load balancing
algorithm is executed by all nodes present in the

their resources as services to the general public. Public
clouds offer several key benefits to service providers,
including no initial capital investment on infrastructure
and shifting of risks to infrastructure providers.
However, public clouds lack fine-grained control over
data, network and security settings, which hampers their
effectiveness in many business scenarios[3][7].

 Private clouds: Also known as internal clouds, private

system and the task of load balancing is shared
among them. A benefit of this is that even if one or
more nodes in the system fail, it will not cause the
total load balancing process to halt; it instead would
affect the system performance to some extent

2) Non-distributed dynamic load balancing:
The interior hardware infrastructure services interrelated to

clouds are designed for exclusive use by a single the Clouds is modeled in the simulator by a Data center
organization. A private cloud may be built and managed
by the organization or by external providers. A private

element for handling service requests. These requests are
application elements sand boxed within VMs, which need to

cloud offers the highest degree of control over be allocated a share of processing power on Data center’s
performance, reliability and security. However, they are
often criticized for being similar to traditional
proprietary server farms and do not provide benefits
such as no up-front capital costs[3][7].

host components. Data center object manages the data center
management activities such as VM creation and destruction
and does the routing of user requests received from user via
the Internet to the VMs.[14].

 Hybrid clouds: A hybrid cloud is a combination of
public and private cloud models that tries to address the IV. RELATED WORKS
limitations of each approach. In a hybrid cloud, part of
the service infrastructure runs in private clouds while the
remaining part runs in public clouds[3][7].

III. LOAD BALANCING

Load balancing is a process of reassigning the total load to
the individual nodes of the collective system to improve
both resource utilization and job response time. It also

Many researchers proposed different algorithms in load
balancing and job scheduling in Cloud computing , in this
section we reflects a number of researches that worked on
enhancement of Load Balancing algorithm.
Sethi et al; in [18] introduced a load balancing algorithm
using fuzzy logic with Round Robin (RR) algorithm. The
algorithm based on various parameters such as processor
speed, and assigned load in VM and etc. The algorithm

avoiding a situation where some of the nodes are heavily maintains the information of each VM and numbers of
loaded while other nodes are idle or doing very little work.
Load balancing ensures that all node in the system does
approximately the equal amount of work at any instant of
time[2][8]. The objective of load balance is to achieve
optimal resource utilization, maximize through put,
minimum response time, and avoid overload [9]. The
heterogeneous environment considered as a major
concern[10][11][12]because the heterogeneous environment

requests currently allocated to VM. When a new request is
received, the load balancer searches for the least loaded VM
and allocate it, but if there are more than one VM, the
selection will be based on processor speed and load in VM
using fuzzy logic. The results showed that its performance is
better than RR algorithm. The drawback of this approach
that authors had focused only on how to decrease the
response time and they ignored talkabout processing cost. In

International Conference on Soft Computing and Engineering
(IJSCE-Sep-Oct-2017)

ISSN: 2231-2307, Volume-5 Issue-3, July 2015

63

addition, the researchers compared their results with only RR
algorithm which had been enhanced and improved by many
researchers before.

Hu et al; in [19] proposed a new algorithm to enhance job
scheduling using genetic algorithm. The algorithm used a
historical data and current state of the system. And it makes a
mapping relationship between the set of physical machines
and the set of VMs. It chooses the least-affective solution by
computing ahead influence of the system after the
deployment of the needed VM resources. They used some
equation to find the best scheduling solution using
population.
The results showed an improvement in the utilization of
resources. On the other hand, the proposed algorithm has
high cost to store and retrieve the historical data of the
system nodes, and this may also increase the response time
and the processing time in a heterogeneous environment
consist of heterogeneous resource.

Sharma et al; in [20] proposed a new algorithm to
enhance response time of each VM. The proposed algorithm
collects information about all VMs in a list and uses it to
allocate appropriate VM which status is available. When a
new request is received, the load balancer will look at the
table and identify VM whose current allocation count is less
than max allocation, and then check its status. The result
returned to data center and then the data center will allocate
this resource to the request. When the VM finished, it will
notify the data center to de-allocate it. The proposed
algorithm calculates the expected response time of each VM
using four equations. The drawback of this algorithm is that
it did not provide a solution for server dead lock which has a
bad effect on the system performance.

Mishra and et alin [17] proposed an ant colonyalgorithm
as a solution for load balancing in the cloud. Ants depend on
the strength of pheromone to select the optimal path that
leads to their destination. In the same way each node in the
network has a pheromone. Each row in the pheromone table
represents the routing preference for each destination, and
each column represents the probability of choosing a
neighbor as the next hop. If an ant is at a choice point when
there is no pheromone, it makes a random decision. If the
pheromone is exist, the node with high probability is selected
and then the pheromone table is updated by increasing the
probability of this node and decreasing other nodes
probabilities. The main drawback of this algorithm is that it
does not consider the fault tolerance issues.

Singh, Bedi and Gupta in [21] develop a new
heterogeneous load balancing algorithms to distribute the
load across number of servers, they create VM's of different
data center according of host specification including core
processor, processing speed, memory, storage etc. Then
allocate weighted count according to the RAM allocated to
the VM's in the datacenter. Then used a data structure to
maintain weight count and the current allocation count of
the VM, they allocate the VM which have available status
and have a higher RAM. When allocates a new VM, the
algorithm returns the VM id to the Data Center Controller,
then updates the allocation count for that VM and adding
the new allocation to the busy list. When the VM finishes
processing the request the algorithm de-allocate the VM and
removed the VM from the busy list. The main drawback of
the algorithms was the authors did not present any results and

any comparison with other algorithms.

V. HYBRID LOAD BALANCE ALGORITHM

In this research we proposed a hybrid algorithm that takes
advantages of both random and greedy algorithms; the
algorithm adopts the characteristics of randomization and
greedy to make an efficient load balancing and covers their
disadvantages. The algorithm considers the current resource
information and the CPU capacity factor to achieve the
objectives. Figure 2 shows the abstract view of proposed
algorithm. The hybrid algorithm consists of two main steps:
 In the first step VMs is distribute over hosts according

to the host qualifications. The largest number of VMs is
located at the most qualified host depending on the
Hosts' CPU capacity. For example if we have five VMs
and three hosts, where the first host has 1 CPU and its
speed = 10000, the second host has 2 CPUs and the
speed of every CPU = 10000, and the third host has 3
CPUs and the speed of every CPU = 100000. So, the
capacity of the first host = 1*10000=10000, the second
host =2*10000=20000 and the third host
=3*10000=30000. So according to hosts' capacities;
first host will take 1 VM, the second host will take 2
VMs, and the third host which has the largest capacity
will take 3 VMs

 In the second step the algorithm used a new index table
to record the current loads for each VM. And which
used to check the current loads for VM at each iteration,
the algorithm read the value of VM load from the index
table; when the data center receives a request from the
users, it sends the request to the hybrid load balancer.
The hybrid algorithm will select k nodes (VM)
randomly, and then it will choose the current load for
each selectedVM. Then it will choose a VM that have
least VM current loads and return the VM id to Data
center. The Data center will assign the load to the
selected VM and update the value of selected VM in the
index table of current loads. Finally when the VM
finishes processing the request, it will inform the data
center to updating its current load value.

Figure 2 the Proposed Algorithm

International Conference on Soft Computing and Engineering
(IJSCE-Sep-Oct-2017)

ISSN: 2231-2307, Volume-5 Issue-3, July 2015

63

addition, the researchers compared their results with only RR
algorithm which had been enhanced and improved by many
researchers before.

Hu et al; in [19] proposed a new algorithm to enhance job
scheduling using genetic algorithm. The algorithm used a
historical data and current state of the system. And it makes a
mapping relationship between the set of physical machines
and the set of VMs. It chooses the least-affective solution by
computing ahead influence of the system after the
deployment of the needed VM resources. They used some
equation to find the best scheduling solution using
population.
The results showed an improvement in the utilization of
resources. On the other hand, the proposed algorithm has
high cost to store and retrieve the historical data of the
system nodes, and this may also increase the response time
and the processing time in a heterogeneous environment
consist of heterogeneous resource.

Sharma et al; in [20] proposed a new algorithm to
enhance response time of each VM. The proposed algorithm
collects information about all VMs in a list and uses it to
allocate appropriate VM which status is available. When a
new request is received, the load balancer will look at the
table and identify VM whose current allocation count is less
than max allocation, and then check its status. The result
returned to data center and then the data center will allocate
this resource to the request. When the VM finished, it will
notify the data center to de-allocate it. The proposed
algorithm calculates the expected response time of each VM
using four equations. The drawback of this algorithm is that
it did not provide a solution for server dead lock which has a
bad effect on the system performance.

Mishra and et alin [17] proposed an ant colonyalgorithm
as a solution for load balancing in the cloud. Ants depend on
the strength of pheromone to select the optimal path that
leads to their destination. In the same way each node in the
network has a pheromone. Each row in the pheromone table
represents the routing preference for each destination, and
each column represents the probability of choosing a
neighbor as the next hop. If an ant is at a choice point when
there is no pheromone, it makes a random decision. If the
pheromone is exist, the node with high probability is selected
and then the pheromone table is updated by increasing the
probability of this node and decreasing other nodes
probabilities. The main drawback of this algorithm is that it
does not consider the fault tolerance issues.

Singh, Bedi and Gupta in [21] develop a new
heterogeneous load balancing algorithms to distribute the
load across number of servers, they create VM's of different
data center according of host specification including core
processor, processing speed, memory, storage etc. Then
allocate weighted count according to the RAM allocated to
the VM's in the datacenter. Then used a data structure to
maintain weight count and the current allocation count of
the VM, they allocate the VM which have available status
and have a higher RAM. When allocates a new VM, the
algorithm returns the VM id to the Data Center Controller,
then updates the allocation count for that VM and adding
the new allocation to the busy list. When the VM finishes
processing the request the algorithm de-allocate the VM and
removed the VM from the busy list. The main drawback of
the algorithms was the authors did not present any results and

any comparison with other algorithms.

V. HYBRID LOAD BALANCE ALGORITHM

In this research we proposed a hybrid algorithm that takes
advantages of both random and greedy algorithms; the
algorithm adopts the characteristics of randomization and
greedy to make an efficient load balancing and covers their
disadvantages. The algorithm considers the current resource
information and the CPU capacity factor to achieve the
objectives. Figure 2 shows the abstract view of proposed
algorithm. The hybrid algorithm consists of two main steps:
 In the first step VMs is distribute over hosts according

to the host qualifications. The largest number of VMs is
located at the most qualified host depending on the
Hosts' CPU capacity. For example if we have five VMs
and three hosts, where the first host has 1 CPU and its
speed = 10000, the second host has 2 CPUs and the
speed of every CPU = 10000, and the third host has 3
CPUs and the speed of every CPU = 100000. So, the
capacity of the first host = 1*10000=10000, the second
host =2*10000=20000 and the third host
=3*10000=30000. So according to hosts' capacities;
first host will take 1 VM, the second host will take 2
VMs, and the third host which has the largest capacity
will take 3 VMs

 In the second step the algorithm used a new index table
to record the current loads for each VM. And which
used to check the current loads for VM at each iteration,
the algorithm read the value of VM load from the index
table; when the data center receives a request from the
users, it sends the request to the hybrid load balancer.
The hybrid algorithm will select k nodes (VM)
randomly, and then it will choose the current load for
each selectedVM. Then it will choose a VM that have
least VM current loads and return the VM id to Data
center. The Data center will assign the load to the
selected VM and update the value of selected VM in the
index table of current loads. Finally when the VM
finishes processing the request, it will inform the data
center to updating its current load value.

Figure 2 the Proposed Algorithm

International Conference on Soft Computing and Engineering
(IJSCE-Sep-Oct-2017)

ISSN: 2231-2307, Volume-5 Issue-3, July 2015

63

addition, the researchers compared their results with only RR
algorithm which had been enhanced and improved by many
researchers before.

Hu et al; in [19] proposed a new algorithm to enhance job
scheduling using genetic algorithm. The algorithm used a
historical data and current state of the system. And it makes a
mapping relationship between the set of physical machines
and the set of VMs. It chooses the least-affective solution by
computing ahead influence of the system after the
deployment of the needed VM resources. They used some
equation to find the best scheduling solution using
population.
The results showed an improvement in the utilization of
resources. On the other hand, the proposed algorithm has
high cost to store and retrieve the historical data of the
system nodes, and this may also increase the response time
and the processing time in a heterogeneous environment
consist of heterogeneous resource.

Sharma et al; in [20] proposed a new algorithm to
enhance response time of each VM. The proposed algorithm
collects information about all VMs in a list and uses it to
allocate appropriate VM which status is available. When a
new request is received, the load balancer will look at the
table and identify VM whose current allocation count is less
than max allocation, and then check its status. The result
returned to data center and then the data center will allocate
this resource to the request. When the VM finished, it will
notify the data center to de-allocate it. The proposed
algorithm calculates the expected response time of each VM
using four equations. The drawback of this algorithm is that
it did not provide a solution for server dead lock which has a
bad effect on the system performance.

Mishra and et alin [17] proposed an ant colonyalgorithm
as a solution for load balancing in the cloud. Ants depend on
the strength of pheromone to select the optimal path that
leads to their destination. In the same way each node in the
network has a pheromone. Each row in the pheromone table
represents the routing preference for each destination, and
each column represents the probability of choosing a
neighbor as the next hop. If an ant is at a choice point when
there is no pheromone, it makes a random decision. If the
pheromone is exist, the node with high probability is selected
and then the pheromone table is updated by increasing the
probability of this node and decreasing other nodes
probabilities. The main drawback of this algorithm is that it
does not consider the fault tolerance issues.

Singh, Bedi and Gupta in [21] develop a new
heterogeneous load balancing algorithms to distribute the
load across number of servers, they create VM's of different
data center according of host specification including core
processor, processing speed, memory, storage etc. Then
allocate weighted count according to the RAM allocated to
the VM's in the datacenter. Then used a data structure to
maintain weight count and the current allocation count of
the VM, they allocate the VM which have available status
and have a higher RAM. When allocates a new VM, the
algorithm returns the VM id to the Data Center Controller,
then updates the allocation count for that VM and adding
the new allocation to the busy list. When the VM finishes
processing the request the algorithm de-allocate the VM and
removed the VM from the busy list. The main drawback of
the algorithms was the authors did not present any results and

any comparison with other algorithms.

V. HYBRID LOAD BALANCE ALGORITHM

In this research we proposed a hybrid algorithm that takes
advantages of both random and greedy algorithms; the
algorithm adopts the characteristics of randomization and
greedy to make an efficient load balancing and covers their
disadvantages. The algorithm considers the current resource
information and the CPU capacity factor to achieve the
objectives. Figure 2 shows the abstract view of proposed
algorithm. The hybrid algorithm consists of two main steps:
 In the first step VMs is distribute over hosts according

to the host qualifications. The largest number of VMs is
located at the most qualified host depending on the
Hosts' CPU capacity. For example if we have five VMs
and three hosts, where the first host has 1 CPU and its
speed = 10000, the second host has 2 CPUs and the
speed of every CPU = 10000, and the third host has 3
CPUs and the speed of every CPU = 100000. So, the
capacity of the first host = 1*10000=10000, the second
host =2*10000=20000 and the third host
=3*10000=30000. So according to hosts' capacities;
first host will take 1 VM, the second host will take 2
VMs, and the third host which has the largest capacity
will take 3 VMs

 In the second step the algorithm used a new index table
to record the current loads for each VM. And which
used to check the current loads for VM at each iteration,
the algorithm read the value of VM load from the index
table; when the data center receives a request from the
users, it sends the request to the hybrid load balancer.
The hybrid algorithm will select k nodes (VM)
randomly, and then it will choose the current load for
each selectedVM. Then it will choose a VM that have
least VM current loads and return the VM id to Data
center. The Data center will assign the load to the
selected VM and update the value of selected VM in the
index table of current loads. Finally when the VM
finishes processing the request, it will inform the data
center to updating its current load value.

Figure 2 the Proposed Algorithm

Hybrid Load Balancing Algorithm in Heterogeneous Cloud Environment

64

A Hybrid Algorithm
Input: new request
Output: The VM id that selected to assign the load.
0. Initialize, Cl_Table(0..n-1) ← 0 At start all VM’s havezero allocation., K← m, VM_id ←-1 , VMids()=-1,i← 0,currCount ← 0, minCount ← Max_Value, TempVMid ← -

1;
1. Parses VM_List() to LoadBalancer:
2. For i← 0 to k //Select VM randomly
3. TempVMid ← random(VM_List()).
4. VM_id ← TempVMid
5. If vm_id Exist in Cl_Table(VM_id) then
6. currCount ← Cl_Table(VM_id)
7. Else
8. currCount ← 0
9. VMids() ← (VM_id, currCount).
10. End for
11. TempVMid ← -1
12. currCount ← 0
13. For i ← 0 to k
14. TempVMid ← i
15. currCount ← VMids(TempVMid)
16. If currCount <minCount then
17. minCount= currCount
18. VM_id ← TempVMid
19. End if
20. End for
21. Cl_Table(VM_id) ← Cl_Table(VM_id)+ 1

A. Pseudo code
The Hybrid algorithm is a load balancing algorithm used

by the data center to distribute the received tasks efficiently
over the virtual machine under a normal work load by
finding the best VM among the group of VMs to assign the
load in heterogeneous cloud computing environment. The
hybrid algorithm consists of both random and greedy
algorithms. The hybrid algorithm considers the current
resource information and the CPU capacity factor. The
hybrid algorithm will select k nodes (VM) randomly, and
choose the current load for each VM selected. Then the
hybrid algorithm will choose a VM that have least VM
current loads and return the VM ID to Data Center. Figure 3
shows the pseudo code of the proposed algorithm.

Figure 3 the hybrid algorithm Pseudo code

VI. EXPERIMENT AND RESULTS

This section presents the experiments and results. Cloud
Analyst simulator has been used to compare the proposed
hybrid algorithm with the current load balance algorithms.
Cloud Analyst is a graphical simulation tool based on
Cloudsim for modeling and analysis behavior of cloud
computing environment, which supports visual modeling
and simulation of large-scale applications that are deployed
on Cloud infrastructures[23]. We defined the simulator
parameters such as (users configuration, Data centers
configuration, VMs configuration). We implemented the
hybrid algorithm and the following current load balance
algorithms (Round Robin, Equally spread current Execution
(ESCE), Random and Greedy algorithms).

A. Experiment
In order to evaluate the proposed hybrid algorithm which
consider the capacity of CPU. We run the experiments in
heterogeneous environment of hosts; where each machine
has different number of CPUs and speed.
In the experiments we set the number of virtual machines in
the data center to be 50 VMs and the size used to host
applications is 100 MB. Each Virtual machine has 1 GB of
RAM memory and 10 MB of available Band width.
Simulated hosts is x86 architecture, virtual machine monitor
Xen and Linux operating system. The Users are grouped by
a factor of 1000, and requests are grouped by a factor of
100. Each user request requires 250 instructions to be
executed. The configurations file as in figure 4 and 5, and in
Table 1 and 2.

Table1 the user’s base configuration

Figure 4 Application deployment configurations

Figure 5 Data center configuration

Table 2 Hosts Configuration

B. Results
From this experiment we obtain results as in figure 6:

International Conference on Soft Computing and Engineering
(IJSCE-Sep-Oct-2017)

ISSN: 2231-2307, Volume-5 Issue-3, July 2015

65

Figure 6 all algorithms results comparison

C. Discussion
In the experiment we have evaluated the proposed hybrid
algorithm and compared it with other load balancing
algorithms under heterogeneous environment of hosts. The
result found that the hybrid algorithm average response time
was 930.77(ms) and the average processing time was
620.07(ms) when [K] = 20. This result was better than other
algorithms. The difference between the results exceeded 100
(ms) on each average response and average processing time.
The response time improved because most of selected VM
was in the qualified host, and this means the hybrid
algorithm add a significant improvement on average
response time and on processing time compared with other
algorithms. In addition, the performance has improved in
heterogeneous cloud computing environment.

VII. CONCLUSION AND FUTURE WORK

Cloud computing is a heterogeneous environment offers a
rapidly and on-demand wide range of services to the end
users. Load balancing is one of the important issues in cloud
computing. The current load balance scheduling algorithms
in cloud computing environment is not highly efficient. We
proposed a hybrid algorithm to enhance the cloud
computing performance. The hybrid algorithm based on
randomize and greedy algorithm and considering the current
resource information and the CPU capacity factor. The
experiments implemented using cloud analyst simulator.
The results showed that the hybrid algorithm add a
significant improvements on average response time and
average processing time compared with other algorithms.
And the performance has improved in heterogeneous cloud
computing environment. In future we are going to test this
algorithm in a real world for better performance, and we can
also consider other parameters for efficient utilization of
resources such as consider cost, failover etc. We are going
to make change and develop on the algorithm to solve the
load balance problem in bursts workload state.

REFERENCES
1. Florence, A.P. and V. Shanthi, Intelligent Dynamic Load Balancing

Approach for Computational Cloud. International Journal of Computer
Applications, 2013: p. 15-18.

2. Sharma, T. and V.K. Banga, Efficient and Enhanced Algorithm in
Cloud Computing. International Journal of Soft Computing and
Engineering (IJSCE), March 2013. 3 (1).

3. Zhang, Q., L. Cheng, and R. Boutaba, Cloud computing: state-of-the-
art and research challenges. Journal of Internet Services and
Applications, 2010. 1(1): p. 7-18.

4. Khatib, V. and E. Khatibi, Issues on Cloud Computing : A Systematic
Review, in International Conference on Computational Techniques and
Mobile Computing. 2012: Singapore.

5. Sareen, P., Cloud Computing: Types, Architecture, Applications,
Concerns, Virtualization and Role of IT Governance in Cloud.
International Journal of Advanced Research in Computer Science and
Software Engineering, 2013. 3(3): p. 533-538.

6. O., K.S., I. F., and A. O., Cloud Computing Security Issues and
Challenges. International Journal of Computer Networks (IJCN), 2011.
3(5): p. 247-255.

7. Sajid, M. and Z. Raza, Cloud Computing: Issues & Challenges, in
International Conference on Cloud. 2013. p. 35-41.

8. Mohapatra, S., K.S. Rekha, and S. Mohanty, A Comparison of Four
Popular Heuristics for Load Balancing of Virtual Machines in Cloud
Computing. International Journal of Computer Applications, 2013.68.

9. Ray, S. and A. De Sarkar, Execution Analysis Of Load Balancing
Algorithms In Cloud Computing Environment. International Journal on
Cloud Computing: Services and Architecture (IJCCSA), 2012. 2(5): p.
1-13.

10. Yao, J.H., Ju-hou, Load Balancing Strategy Of Cloud Computing
Based On Artificial Bee Algorithm in Computing Technology and
Information Management (ICCM). 2012, IEEE: Seoul. p. 185 - 189.

11. Shameem, P.M. and R.S. Shaji, A Methodological Survey on Load
Balancing Techniques in Cloud Computing. International Journal of
Engineering and Technology (IJET), 2013. 4(5): p. 3801-3812.

12. Behal, V. and A. Kumar, Cloud Computing: Performance Analysis Of
Load Balancing Algorithms In Cloud Heterogeneous Environment, in
Confluence The Next Generation Information Technology Summit
(Confluence). 2014, IEEE: Noida. p. 200 - 205.

13. Kaushik, V.K., H.K. Sharma, and D. Gopalani, Load Balancing In
Cloud Computing Using High Level Fragmentation Of Dataset, in
International Conference on Cloud, Big Data and Trust. 2013. p. 118-
126.

14. Mehta, R., P. Yask, and T. Harshal, Architecture For Distributing Load
Dynamically In Cloud Using Server Performance Analysis Under
Bursty Workloads. 2012. 1(9).

15. Tiwari, M., K. Gautam, and K. Katare, Analysis of Public Cloud Load
Balancing using Partitioning Method and Game Theory. International
Journal of Advanced Research in Computer Science and Software
Engineering, 2014. 4(2): p. 807-812.

16. Deepika, D. Wadhwa, and N. Kumar, Performance Analysis of Load
Balancing Algorithms in Distributed System. Advance in Electronic
and Electric Engineering, 2014. 4(1): p. 59-66.

17. Ratan, M. and J. Anant, Ant colony Optimization: A Solution of Load
Balancing in Cloud. International Journal of Web & Semantic
Technology (IJWesT), 2012. III.

18. Sethi, S., S. Anupama, and K. Jena, S, Efficient load Balancing in
Cloud Computing using Fuzzy Logic. IOSR Journal of Engineering
(IOSRJEN), 2012. 2(7): p. PP 65-71.

19. Hu, J., et al., A Scheduling Strategy on Load Balancing of Virtual
Machine Resources in Cloud Computing Environment, in 3rd
International Symposium on Parallel Architectures, Algorithms and
Programming. 2010, IEEE. p. 89-96.

20. Sharma, T. and V.K. Banga, Proposed Efficient and Enhanced
Algorithm in Cloud Computing. International Journal of Engineering
Research & Technology (IJERT), 2013. 2(2).

21. Singh, A., R. Bedi, and S. Gupta, Design and implementation of an
Efficient Scheduling algorithm for load balancing in Cloud Computing.
International Journal of Emerging Trends & Technology in Computer
Science (IJETTCS), 2014. 3(1).

22. cloudsim. cloudbus; Available from:
http://www.cloudbus.org/cloudsim/.

23. Pakize, S.R., S.M. Khademi, and A. Gandomi, Comparison Of
CloudSim, CloudAnalyst And CloudReports Simulator in Cloud
Computing. International Journal of Computer Science And Network
Solutions, 2014. 2: p. 19-27.

